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It is proposed to use the exergy of a thermodynamic system to analyze relaxation processes.
A relation between the relaxation time and the exergy of a thermodynamic system is obtained.

Systems submerged in a thermostat (environment) and interacting with it must be considered in solving
a whole series of applied thermodynamics problems. The system and thermostat are here not in equilibrium,
Naturally, a thermodynamic potential of more general type than the free energy or isobaric Gibbs potential is
necessary for such systems. Indeed, Landau and Lifshits {1] used the exergy to describe fluctuations and to
investigate stability and dissipative processes.

The exergy can be used as a thermodynamic Lagrangian in the formulation of variational principles for
the thermodynamics of irreversible processes. Such an approach [2, 3] permits bypassing a number of dif-
ficulties which occur in the utilization of other thermodynamic functions as-a Lagrangian,

The application of the relaxational formalism of the thermodynamics of irreversible processes [4, 5] to
disperse systems permitted the description of a number of processes such as acoustic relaxation, compres-
sion of a dusty gas in a compressor, and heat conduction of suspensions [6, 7], from a single viewpoint.
Exergy can also be used to extend the relaxation formalism of nonequilibrium thermodynamics to the case
of a system in a thermostat. The present paper is devoted to a clarification of this question.

Let us consider the exergy of a fixed system
dE = dU— TdS + podV @)
and the exergy of a stream of material in a system of the center of mass. of the extracted element
dE; = dH — TdS. @
For systems in which the relaxation process characterized by the parameter ¢ proceeds, the fundamen-
tal Gibbs equation is valid [8]
dU= TdS — pdV— AdE, (3)

dH = TdS -+ Vdp — AdE. (4)

If several relaxation processes proceed in the system, then the quantities A and £ can be interpreted as
vectors with the components Ay,. .. , A, &,...,£&. Moreover, since a thermodynamic analysis of a chemi-
cal reaction is analogous to the description of relaxation processes, (1)-(4) and all the subsequent results can
be used for systems in which chemical reactions proceed. Eliminating dU in (1) by using (3) and dH in (2) by
using (4), we have

dE= (T-— Ty) dS — (p — py) dV— AdE, ()
dE; = (T—Tg)dS + Vdp - Adk. (6)

Taking into account that the differentials dE(S, V, &) and dE¢(S, p, £) are total, we obtain
dE O0E; ) R ( 7] 3) ) .
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If we select U, V, £ as independent variables defining E, and H, p, ¢ for Ef, then there follows from (1)-(4)

dE = TdU+ [py— (1 — %) p] dV— (1 — ) AdE,

dE = vOdH -+ (1 — ©®) Vdp— (1 — 1) Ad,
where 7(€) = 1—(Tg/T). From (8) and (9) we find
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Substituting the total differentials dU(T, V, & and dH(T, p, £ in (8) and (9), we obfain
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For the derivatives (BU/SE)T,V and (QH/B3¢)T ,p We can write [8]
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Taking (13) and (14) into account, (11) and (12) become

L= orson (24, ]
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from which follows
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If the differential of the entropy S = S(E, V, ) is expressed from (5) and (6), then the expression

as as
A=(T—T)) (__) = (T—T) (_)
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can be obtained for the affinity of the process., The phenomenological law
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can be written for the velocity of the relaxation process, where the affinity A is a function of the state A(x, y,
§), and x and y are parameters of this state. Expanding A in a series for unchanged x and y
04’

A=Awﬁwjg> At 4 0 (AR (20)
X, ¥

and taking into account that Agquj = 0 in an equilibrium state, we rewrite (19) in the form
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Giving the values (S, V), (S, p), (U, V), (H, p) successively to x and y, we express the relaxation time in
terms of the exergy by using (7) and (10)

FE\ 1 #E\ 1
TSV:—[L( o8 )s;v] P [L( o8 )s.p] ' (23)

Using (18), we obtain the relaxation time for constant E, V and Ef p:

Ty = — [L(T— 7y (—"—i )E'V]“‘ ;
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The relaxation time for constant V, T and p, T can be found from (22) and (17) with (13) and (14) taken into

account:
v (G )~ ()

we P (), ()

The partial derivatives in all the expressions for the relaxation time are evaluated in the equilibrium state [8].
Using different relationships between the thermodynamic derivatives, we can set up a relationship between
different relaxation times,

(24)

(25)

The very same formalism can be used for complex thermodynamic systems., However, in this case the
generalized enthalpy [9]

H+Bm
=1 gy Ep (26)
H+4- Mgz /

must be used in place of H. By using (8), (9) and the equations of the first law of thermodynamics in the form
Q= dU + pdv, @7
dQ = dH—Vdp, (28)
an expression can be obtained for the useful work performed by the system and the flux of material in which
the relaxation processes proceed:

dLy=(p— po) dV= dE® — dE —T, % 4, 29)

L' = —Vdp = dE® —dE,—T, % @z, (30)
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where dE@) = T(e)dQ is the thermal exergy. The last terms in the right-hand sides of (29) and (30) express
the exergetic losses caused by irreversibility of the processes.

Relaxation processes can be taken into account in the local exergy balance equations [10] for a continuous
nonequilibrium system. If the system is closed or in equilibrium with the medium for constant pressure and
temperature, then the relationships obtained yield the well-known classical results [4, 5, 8].

And finally, we note that relations (29) and (30) can be used for an exergetic analysis of nonstationary
processes, These problems are of practical interest but the methods of their solution have not been de-
veloped at this time, and we can only refer to Ya. Shargut and R. Petela who indicated the possibility of using
the thermodynamics of irreversible processes here.

NOTATION
E is the physical exergy;
Ef is the stream physical exergy;
U is the internal energy;
H is the enthalpy;
S is the entropy;
T is the temperature;
p is the pressure;
v is the volume;
A is the affinity of the relaxation process;
£ is the relaxation parameter;
7(€) is the exergetic temperature;
L is the phenomenological coefficient;
T is the relaxation time under the condition that the parameters x and y = const;
E,%&?) is the thermal exergy;
E‘V ), L are the useful work;
}E, m are the magnetic field induction and magnetic moment;
E,p are the electric field intensity and polarization;
M is the mass;
Z is the center of gravity coordinate;
g is the free-fall acceleration;
the subscript 0 refers to the parameters of the medium.
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